

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 3629–3631

Tetrahedron Letters

One-pot synthesis of 1,2,4-oxadiazoles from carboxylic acid esters and amidoximes using potassium carbonate

Kande K. D. Amarasinghe,^{a,*} Matthew B. Maier,^a Anil Srivastava^b and Jeffrey L. Gray^a

^a Procter & Gamble Pharmaceuticals, Health Care Research Center, 8700 Mason Montgomery Road, Mason, OH 45040, USA
b Chembiatek Research International Block BN, Plot-7, Sec-V, Salt Lake City, Kolkata 700.001, India ^bChembiotek Research International, Block BN, Plot-7, Sec-V, Salt Lake City, Kolkata 700 091, India

> Received 8 March 2006; revised 22 March 2006; accepted 23 March 2006 Available online 12 April 2006

Abstract—A convenient one-pot synthesis of 1,2,4-oxadiazoles is described. The condensation of carboxylic acid esters and amidoximes in the presence of potassium carbonate was employed to synthesize a variety of mono-, bis- and tris-oxadiazoles in moderate to excellent yields.

 $© 2006 Elsevier Ltd. All rights reserved.$

1,2,4-Oxadiazoles are a class of important heterocycles which have been well documented throughout the literature due to their biological importance. 1,2,4-Oxadiazoles have often been used as bioisosteres of esters and amides^{[1](#page-1-0)} and as dipeptide mimetics^{[2](#page-1-0)} in a number of pharmacologically important molecules. They can also be found in a number of biologically important molecules, such as muscarinic agonists,^{[3](#page-1-0)} serotoninergic (5-HT₃) antagonists,^{[4](#page-1-0)} benzodiazepine receptor agonists,⁵ and dopamine ligands[.6](#page-1-0)

Generally, 1,2,4-oxadiazoles are synthesized by cyclodehydration of O-acylamidoximes, promoted by either heat or by bases, such as NaH, NaOEt or pyridine.^{[7](#page-1-0)} A recent report has described the use of tetrabutylammonium fluoride (TBAF) as an activator to promote the cyclization of O-acylamidoximes.^{[8](#page-1-0)} Historically, the preferred method of obtaining O-acylamidoximes is the reaction of amidoximes with activated carboxylic acid derivatives or with carboxylic acids in the presence of a coupling reagent, such as EDC, DCC or DIC.

We were interested in a mild one-pot conversion of carboxylic acid esters and amidoximes to the corresponding 1,2,4-oxadiazoles with high yields. Such a transformation would be particularly useful for medicinal chemists since it would give them direct access to a useful bioisostere of the ester in a single chemical transformation. Existing methods of synthesizing 1,2,4-oxadiazoles from carboxylic acid esters require the presence of strong bases, such as NaH or NaOEt, in refluxing THF or EtOH, and generally give low yields.^{[7](#page-1-0)}

Herein we report a high-yielding one-pot synthesis of 1,3-disubstituted 1,2,4-oxadiazoles 3 by condensing carboxylic acid esters and amidoximes in refluxing toluene in the presence of potassium carbonate (Scheme 1). Both aliphatic and aromatic amidoximes were combined with a small set of simple methyl esters to give 1,2,4-oxadiazoles in good to excellent yields $(Table 1)$ $(Table 1)$.^{[9,10](#page-1-0)} When the reaction was carried out in the absence of K_2CO_3 , no appreciable amounts of 1,2,4-oxadiazoles were detected. The use of Ce_2CO_3 as the base also gave 1,2,4-oxadiazoles in comparable yields. It is also important to note that only the methyl ester of tert-butyl methyl succinate reacted with acetamide oxime to give 3g, leaving the tert-butyl ester intact.

This method was further employed to synthesize a variety of bis-1,2,4-oxadiazoles 5 ([Scheme 2\)](#page-1-0). Both dimethyl malonate and diethyl malonate reacted with acetamide

Scheme 1. Synthesis of 1,2,4-oxadiazoles.

Keywords: Oxadiazoles; Amidoximes; Potassium carbonate; Cyclodehydration.

^{*} Corresponding author. Tel.: +1 513 622 1143; fax: +1 513 622 1433; e-mail: Amarasinghe.kk@pg.com

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.03.155

Table 1. Representative examples of the synthesis of 1,2,4-oxadiazoles 3^8 Compound # R^2 Yield $(\%)^a$ 3a Benzyl Methyl 91

3b Benzyl 4-Methylphenyl 77 3c 4-Methylbenzyl Methyl 95 3d 4-Methylbenzyl 4-Methylphenyl 65 3e 4-Methoxyphenyl Methyl 86 3f 4-Methoxyphenyl 4-Methylphenyl 90 3g *tert*-Butylpropionate Methyl 62

^a Purified products.

Scheme 2. Synthesis of bis-1,2,4-oxadiazoles.

Table 2. Representative examples of the synthesis of bis-1,2,4 oxadiazoles 5

Entry	Compound \mathbb{R}^2		R^3	R ⁴	Yield $(\%)^{\rm a}$
	5a	Methyl	H	Methyl 75	
$\overline{2}$	5a	Methyl	H	Ethyl	64
3	5b	Ethyl	H	Ethyl	64
4	5c	Methyl	Benzyl Ethyl		69
5	5d	Benzyl	Benzyl Ethyl		68
6	5e	4-Fluorobenzyl	Benzyl Ethyl		67
7	5f	3-(Thiophene) methyl Benzyl Ethyl			40
8	5g	Methoxyethyl	Benzyl Ethyl		73
9	5h	Cyclopropylmethyl	Benzyl Ethyl		40
10	5i	4-methoxyphenyl	Benzyl Ethyl		83

^a Purified products.

oxime to give bis-1,2,4-oxadiazole 5a in comparable yields (Table 2, entries 1 and 2). A variety of functionalized amidoximes, including aliphatic, aromatic, heterocyclic and protected alcohols, participated in this reaction to give bis-1,2,4-oxadiazoles in moderate to good yields. Moreover, this method was amenable to the use of microwave irradiation. For example, microwave irradiation of a mixture of dimethyl malonate, acetamide oxime and K_2CO_3 in toluene at 180 °C for 10 min yielded 72% of 5a. [11](#page-2-0) Additionally, we used this method to synthesize tris-1,2,4-oxadiazole 6 in 42% yield and the reaction tolerated the presence of a nitro group in the phenyl ring (Fig. 1).¹⁰ Reaction of L-Boc-Phe-OMe with acetamide oxime in the presence of K_2CO_3 in refluxing toluene for 6 h yielded oxadiazole 7 in 72% yield with complete racemization of the chiral center, as determined by ${}^{19}F$ analysis of its Mosher's amide (Fig. 1).

In summary, a general, practical method of synthesizing 1,2,4-oxadiazoles from carboxylic acid esters and ami-

Figure 1. Additional examples of 1,2,4-oxadiazoles.

doximes has been developed. This method tolerates a variety of functional groups on both reaction partners and gives 3,5 disubstituted 1,2,4-oxadiazoles in moderate to excellent yields.

Acknowledgements

The authors would like to thank Dr. Jennifer Tinsley for her assistance in preparing this manuscript.

References and notes

- 1. Diana, G. D.; Volkots, D. L.; Nitz, T. J.; Baily, T. R.; Long, M. A.; Vescio, N.; Aldous, S.; Pevear, D. C.; Dutko, F. J. Med. Chem 1994, 37, 2421–2436.
- 2. Borg, S.; Vollinga, R. C.; Labarre, M.; Payza, K.; Terenius, L.; Luthman, K. J. Med. Chem. 1999, 42, 4331–4342.
- 3. (a) Orlek, B. S.; Blaney, F. E.; Brown, F.; Clark, M. S. G.; Hadley, M. S.; Hatcher, J.; Riley, G. J.; Rosenberg, H. E.; Wadsorth, H. J.; Wyman, P. J. Med. Chem. 1991, 34, 2726–2735; (b) Suzuki, T.; Uesaka, H.; Hamajima, H.; Ikami, T. Chem. Pharm. Bull. 1999, 47, 876–879.
- 4. Swain, C. J.; Baker, R.; Kneen, C.; Moseley, J.; Saunders, J.; Seward, E. M.; Stevenson, G.; Beer, M.; Stanton, J.; Watling, K. J. Med. Chem. 1991, 34, 140–151.
- 5. (a) Watjen, F.; Baker, R.; Engelstoff, M.; Herbert, R.; Macleod, A.; Knight, A.; Merchant, K.; Moseley, J.; Saunders, J.; Swain, C. J.; Wong, E.; Springer, J. P. J. Med. Chem. 1989, 32, 2282–2291; (b) Williams, J. P.; Lavrador, K. Comb. Chem. HighThroughput Screen. 2000, 3, 43–50.
- 6. Carroll, F. I.; Gray, J. L.; Abraham, P.; Kuzemko, M. A.; Lewin, A. H.; Boja, J. W.; Kuhar, M. J. J. Med. Chem. 1993, 36, 2886–2890.
- 7. Chiou, S.; Shine, H. J. J. Heterocyclic Chem. 1989, 26, 125–128.
- 8. Gangloff, A. R.; Litvak, J.; Shelton, E. J.; Sperandio, D.; Wang, V. R.; Rice, K. D. Tetrahedron Lett. 2001, 42, 1441–1443, and references cited therein.
- 9. General procedure: To a solution of methyl phenylacetate (100 mg, 0.67 mmol) in toluene (3 mL) was added acetamide oxime (104 mg, 1.4 mmol) followed by K_2CO_3 (193 mg, 1.4 mmol). The reaction mixture was stirred at reflux for 6 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (25 mL) and washed successively with water $(2 \times 10 \text{ mL})$ and brine $(1 \times 10 \text{ mL})$. The organic phase was dried (Na_2SO_4) , filtered and concentrated. The residue was chromatographed on $SiO₂$ $(0-20\%$ EtOAc in hexane) to give 106 mg of 3a as a colorless oil (91%).
- 10. All new compounds were fully characterized by ${}^{1}H$ and $13C$ NMR, and mass spectrometry. Characterization data for a few selected compounds $(3a)$: ¹H NMR (300 MHz, CDCl₃) δ 2.40 (s, 3H), 4.22 (s, 2H), 7.29–7.39 (m, 5H); ¹³C

NMR (75 MHz, CDCl₃) δ 11.86, 33.20, 127.90, 129.20, 133.75, 133.80, 167.6, 178.08; $MS = 175$ (MH⁺). (3g): ¹H NMR (300 MHz, CDCl₃) δ 1.33 (s, 9H), 2.26 (s, 3H), 2.67 (t, *J* = 7.2 Hz, 2H); ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$ δ 11.61, 22.18, 28.09, 31.73, 81.29, 164.12, 170.45, 138.51. $(5a)$: ¹H NMR (300 MHz, CDCl₃) δ 2.43 (s, 6H), 4.51 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 11.81, 25.32, 168.10, 171.86. (6): ¹ H NMR (300 MHz, CDCl₃) δ 1.79–1.88 (m, 4H), 2.35 (s, 3H), 2.85 $(t, J = 6.9 \text{ Hz}, 2\text{H}), 3.32 \text{ (s, 2H)}, 3.70 \text{ (s, 6H)}, 7.25$ (d, $J = 8.7$ Hz, 2H), 8.07 (d, $J = 8.7$ Hz, 2H); ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$ δ 1.75, 21.68, 26.56, 32.05, 38.53, 52.94, 58.86, 123.68, 129.92, 131.01, 143.87, 147.35, 167.31, 170.93, 178.76 (7): ¹H NMR (300 MHz, CDCl₃) δ 1.41 (s, 9H), 2.37 (s, 3H), 3.21–3.27 (m, 2H), 5.26–5.31 (m, 1H), 7.08 (d, $J = 6.3$ Hz, 2H), 7.24–7.31 (m, 3H); ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$ δ 11.77, 28.74, 40.07, 49.51, 81.00, 127.54, 128.94, 129.49, 135.35, 156.00, 166.75, 178.80.

11. Microwave reactions were performed on a Biotage Initiator^{TM} at a concentration of 1 M.